Personalized Ranking of Search Results with Implicitly Learned User Interest Hierarchies

نویسندگان

  • Hyoung-rae Kim
  • Philip K. Chan
چکیده

Web search engines are usually designed to serve all users, without considering the interests of individual users. Personalized web search incorporates an individual user's interests when deciding relevant results to return. We propose to learn a user profile, called a user interest hierarchy (UIH), from web pages that are of interest to the user. The user’s interest in web pages will be determined implicitly, without directly asking the user. Using the implicitly learned UIH, we study methods that (re)rank the results from a search engine. Experimental results indicate that our personalized ranking methods, when used with a popular search engine, can yield more relevant web pages for individual users.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personalized Ranking of Search Results with Learned User Interest Hierarchies from Bookmarks

Web search engines are usually designed to serve all users, without considering the interests of individual users. Personalized web search incorporates an individual user's interests when deciding relevant results to return. We propose to learn a user profile, called a user interest hierarchy (UIH), from web pages that are of interest to the user. The user’s interest in web pages will be determ...

متن کامل

Personalized Search Results with User Interest Hierarchies Learnt from Bookmarks

Personalized web search incorporates an individual user's interests when deciding relevant results to return. While, most web search engines are usually designed to serve all users, without considering the interests of individual users. We propose a method to (re)rank the results from a search engine using a learned user profile, called a user interest hierarchy (UIH), from web pages that are o...

متن کامل

Ontological User Profiles for Personalized Web Search

The goal of Web search personalization is to tailor search results to a particular user based on that user’s interests and preferences, thus allowing for more efficient information access. One of the key factors for effective personalization of information access is the user context. We present an approach to personalized search that involves building models of users context as ontological prof...

متن کامل

Personalized Web Search by Using Learned User Profiles in Re-ranking

Search engines return results mainly based on the submitted query; however, the same query could be in different contexts because individual users have different interests. To improve the relevance of search results, we propose re-ranking results based on a learned user profile. In our previous work we introduced a scoring function for re-ranking search results based on a learned User Interest ...

متن کامل

Learning Ontology-Based User Profiles: A Semantic Approach to Personalized Web Search

Every user has a distinct background and a specific goal when searching for information on the Web. The goal of Web search personalization is to tailor search results to a particular user based on that user’s interests and preferences. Effective personalization of information access involves two important challenges: accurately identifying the user context, and organizing the information in suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005